Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contact Us Login 
An Official Publication of the Indian Association of Oral and Maxillofacial Pathologists

  Table of Contents    
Year : 2012  |  Volume : 16  |  Issue : 2  |  Page : 251-255

Toluidine blue: A review of its chemistry and clinical utility

Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, Maharashtra, India

Date of Web Publication27-Jul-2012

Correspondence Address:
Gokul Sridharan
Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Institutional Area, Sector 4, Kharghar, Navi Mumbai- 410 210, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-029X.99081

Rights and Permissions



Toluidine blue is a basic thiazine metachromatic dye with high affinity for acidic tissue components, thereby staining tissues rich in DNA and RNA. It has found wide applications both as vital staining in living tissues and as a special stain owing to its metachromatic property. Toluidine blue has been used in vivo to identify dysplasia and carcinoma of the oral cavity. Use of toluidine blue in tissue sections is done with the aim to highlight components, such as mast cells granules, mucins, and cartilage. This article provides an overview on chemistry, technique, and the various applications of toluidine blue.

Keywords: Metachromasia, toluidine blue, vital staining

How to cite this article:
Sridharan G, Shankar AA. Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol 2012;16:251-5

How to cite this URL:
Sridharan G, Shankar AA. Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol [serial online] 2012 [cited 2021 Dec 8];16:251-5. Available from: https://www.jomfp.in/text.asp?2012/16/2/251/99081

   Introduction Top

Toluidine blue (also known as tolonium chloride) is an acidophilic metachromatic dye that selectively stains acidic tissue components (sulfates, carboxylates, and phosphate radicals). [1] Toluidine blue (TB) has an affinity for nucleic acids, and therefore binds to nuclear material of tissues with a high DNA and RNA content. [2] It is a member of the thiazine group and is partially soluble in both water and alcohol. [3] Toluidine blue has been known for various medical applications since its discovery by William Henry Perkin in 1856, after which it was primarily used by the dye industry. Also known as methylanaline or aminotoluene, it basically has 3 isoforms, namely, ortho-toluidine, para-toluidine, and meta-toluidine. Toluidine blue has been extensively used as a vital stain for mucosal lesions and also has found applications in tissue sections to specifically stain certain components owing to its metachromatic property.

Vital staining is the staining of cells or tissues in the living state. The earliest technique developed by Paul Ehrlich in 1885 involved the immersion of freshly removed tissue in methylated blue. There are two techniques of vital staining, namely, intravital staining in the living body (in vivo) and supravital staining outside the body usually applied to slide preparation of detached cell. [4] TB was first applied for in vivo staining by Reichart in 1963 for uterine cervical carcinoma in situ. [5]

During 1960s suggestion was made that TB may stain malignant epithelia of the mucous membrane in vivo, whereas normal tissue failed to retain the dye. TB detects relative rather than absolute differences between normal and malignant cells and tissue. They can be used as 1% or 2% oral rinse or an application either in aqueous form or as weak acid solution or of undefined formulation. Only about 5% of dye by weight is retained in oral cavity following expectoration. [6] Its use in vivo is based on the fact that dysplastic and neoplastic cells may contain quantitatively more nucleic acids than normal tissues. Also malignant epithelium may contain intracellular canals that are wider than the normal epithelium, which may facilitate penetration of the dye. [1]

Vital staining of the oral epithelium has been suggested as a means of surveillance in patients who are at a risk of developing oral cancer and for those who had confirmed neoplasms of other parts of aerodigestive tract. [6] TB has been used as a vital stain to highlight potentially malignant oral lesions and may identify early lesions, which could be missed out on clinical examination. Moreover, it can outline the full extent of dysplastic epithelium or carcinoma prior to excisions, [7] and can detect multicentric or second tumors and can help in the followup of patients with oral cancer. It is useful in obtaining the marginal control of carcinoma and in selecting the biopsy sample site in premalignant lesions. Loss of heterozygosity may be detected in TB-stained lesions. TB-stained tissue may appear dark royal blue or pale royal blue color. [3]

Majority of the dyes stain tissues in differing degrees of intensity of the same color, however, certain tissue components, which in the presence of certain basic dyes of the coal tar group, will stain a color other than that of the dye. Such staining reaction is known as metachromasy and the tissue is said to exhibit metachromasia and the dye as a metachromatic dye. Among the principal tissue components that exhibit metachromasia are mucin, cartilage, and mast cell granules. The dyes exhibiting metachromatic properties are mainly of thiazine group, thionine, TB, azure A, azure B, methyl violet, safranin, and acridine orange. [4] TB is one such dye, which has been used in tissue sections for identification of various cells.

   Tissue Staining Top


TB stains tissues based on the principle of metachromasia. The dye reacts with the tissues to produce a color different from that of the original dye and from the rest of the tissue. Metachromasia was discovered in 1875 by Cornil, Jurgens, and Ranvier. Metachromasia is important as it is highly selective and only certain tissue structures can stain metachromatically. It is a phenomenon whereby a dye may absorb light at different wavelengths depending on its concentration and surroundings and it has the ability to change its color without changing its chemical structure. The physical changes that bring about this color change are a specialized, orderly form of dye aggregation. For metachromasia to occur there must be free electronegative groups on the surface of tissues. [8]

Metachromasia is attributed to stacking of dye cations at the sites of high density of anionic groups in the tissue. Stacking shortens the wavelength of maximum absorption, a hypsochromic shift, so that the maximum wavelength in the spectrum of the transmitted light is longer making the observed color red instead of blue. [9] Substances that can be stained in this way are called chromotropes and they include mucins, mast cells, and so on. [10] The chromotropes carry acidic groups with a minimum density of not more than 0.5 nm between adjacent negatively charged groups. These alter the color of metachromatic dyes. Principally, van der Waals forces hold the dye together to form dimers, trimers, or polymers. Other forms that play a lesser role are hydrogen and hydrophobic bonding. The dye exists in a normal monomeric (orthochromatic) form to a potential polymeric (metachromatic) form. The negative charges on the chromotropes attract the positively charged polar groups on the dye leading to dye-to-dye aggregation in a specialized orderly form forming a polymeric form. There are three forms of metachromasia alpha (α), beta (β), and gamma (g) giving a range of colors [Table 1]. [4]
Table 1: Various forms of metachromasia

Click here to view

The color shift is always from a blue or violet dye to yellow or red stain meaning that the color absorption shifts to shorter wavelengths, leaving only the longest wavelengths to be seen. This is believed to represent polymerization of the dye. The greater the degree of polymerization, the stronger is the metachromasia. Metachromasia requires water between dye molecules to form the polymer and does not survive dehydration and clearing. [10] The absorption spectrum of TB with an orthochromatic tissue is maximum at about 630 nm and staining result is blue. With a metachromatic substance the absorption spectrum is maximum at 480-540 nm and the staining is red in color. [4] Van der Waals attraction between TB and polyanions contribute to affinity when binding to DNA or RNA as does hydrophobic bonding. However, flexible, high charge density glycosaminoglycans (GAG) permit charge neutralization of dye aggregates or stacks formed due to dye-to-dye van der Waals attractions and hydrophobic bonding. [9]

Mast cells were first recognized by virtue of metachromasia in 1877 by Paul Ehrlich. The compound responsible for metachromasia was identified as heparin, a heteroglycan rich in half-sulfate esters. TB is a small weakly hydrophilic cationic dye. Attached to DNA or RNA, in chromatin or Nissl substance, this dye has a blue color. Attached to glycosaminoglycans, in mast cell granules or cartilage matrix, the dye displays a purple metachromatic color. [9] TB is typically applied from weakly acidic aqueous solutions. DNA, RNA, and GAG are then polyanionic, whereas most proteins are protonated and so polycationic. Thus basic dye cations exchange with mobile tissue cations associated with the various polyanions, a process termed basic dyeing. This ion exchange is entropy driven as it increases the randomness of the system. Because polycationic proteins are not associated with mobile cations, ion exchange cannot occur minimizing background staining. [9]

   Application of Toluidine Blue Top

  • Connective tissue mucins, especially acid mucins. The tissue stains purple to red, while the background is stained blue.
  • Mast cell granules stain purple in color due to the presence of heparin and histamine.
  • Amyloid stain blue but under polarized light they give a bright red birefringence.
  • Endocrine cell granules are stained purple to red. The concentration of stain used here is 0.01%.
  • Sulfatides stain red brown or yellow. Only lipids that are sufficiently acidic to induce a metachromatic shift are stained.
  • Corneybacterium diphtheria contains granules with polymerized inorganic polyphosphate, which stains red violet color.
  • Helicobacter stains dark blue against a variably blue background. The concentration of TB used is 1%. [11]
  • TB can also be used to stain frozen section because of the rapidity of the staining procedure (10-20 s) and better clarity of the cells.

   Vital Staining Top

The use of TB as a vital stain was first proposed by Richart to disclose dysplasia and carcinoma in situ of the uterine cervix. Neibel and Chomet and Shedd and co-workers were the first to report vital application of TB for the detection of premalignant and malignant lesions of the oral cavity. They confirmed the property of TB to verify clinically suspicious lesions as neoplastic, to delineate margins of premalignant and malignant growth, and to detect unnoticed or satellite tumors. [12]

TB is used based on the fact that dysplastic and neoplastic cells may contain quantitatively more nucleic acids than normal tissues. Also, malignant epithelium may contain intracellular canals that are wider than normal epithelium, which may facilitate penetration of the dye. [1] The other proposals about the uptake of TB in dysplastic and carcinomas include the high density of nuclear material, loss of cell cohesion, and increased mitosis. [3]

The use of TB as an adjuvant diagnostic aid in the identification of malignant lesions has led to publishing of numerous studies, however, with diverse results. The diversity could be due to variations in methodology, the population studies, and lesions analyzed. In addition, in some of the studies, biopsies of the lesions that did not retain TB were not performed. These factors may interfere with the evaluation of staining, thus limiting the value of the results obtained. [13]

TB is generally prepared in 1% concentration for oral application. A 100 mL of 1% TB consists of 1 gm TB powder, 10 mL of 1% acetic acid, 4.19 mL absolute alcohol, and 86 mL distilled water to make up 100 mL. The pH is usually regulated to 4.5. [14] The technique of application usually involves rinsing of the mouth twice with water for 20 s to remove debris. And 1% acetic acid is then applied for 20 s to remove ropey saliva. This is followed by 1% TB application for 20 s either with cotton swab when a mucosal lesion was seen or given as rinse when no obvious lesion was detected. Again, 2 rinses with 1% acetic acid were performed to reduce the extent of mechanically retained stain. Finally the mouth is rinsed with water. [14] The interpretation is based on the color; a dark blue (royal or navy) stain is considered positive, light blue staining is doubtful and when no color is observed, it is interpreted as negative stain. Under normal conditions, nucleated scales covering the papillae on the dorsum of the tongue as well as the pores of seromucinous glands in hard palate are frequently stained with TB. [15]

Several studies have been performed over the years to determine the sensitivity and specificity of in vivo TB staining. Earlier studies have found sensitivity in the range of 86-100% and specificity in the range of 44-100%. [14],[16],[17],[18] Lingen et al, [7] in their review, mentioned the sensitivity and specificity of TB in the detection of oral cancer to be in the range of 78-100% and 31-100%, respectively. The evaluation of TB staining for detection of oral premalignant lesions and carcinoma in animal models showed high false-negative results in premalignancies (95.2%) seeding doubt on whether TB is sensitive enough for the detection of premalignant lesions. In contrast, it was found that in vivo staining with TB was highly sensitive in detecting carcinoma. [12]

In 1989, meta-analysis of available data assessing the effectiveness of TB application in identification of oral squamous cell carcinoma determined sensitivity ranging from 93.5% to 97.8% and specificity ranging from 73.3% to 92.9%. [19] Epstein et al[1] showed sensitivity and specificity of 92.5% and 63.2%, respectively, in their results.

The analysis of TB in vivo stain in 145 oral mucosal lesions among 102 enrolled patients revealed 100% sensitivity and 62% specificity. It was suggested that TB staining is an invaluable option in the surveillance of high-risk subjects and in addition it has a remarkable sensitivity in the detection of invasive carcinoma. The study also found that lesions with limited dysplasia or atypia do not stain consistently with TB. Oral premalignant lesions showed false-negative rate of 20.5%, which could be due to the lack of objective criteria for evaluation of stain uptake. [6]

The application of TB in 81 lesions of which 48 lesions were considered clinically suspicious and 33 were clinically benign showed that 28 cases had no stain, 20 had equivocal stain and 33 had positive stain. On biopsy of these lesions 54 were nonmalignant and 27 were carcinoma. The study found 100% sensitivity and 52% specificity. [2]

Onofre et al[13] evaluated the TB staining in premalignancies, and superficial oral ulceration suggesting malignancy. The study showed 100% sensitivity in the detection of in situ and invasive carcinoma and no false-negative results occurred. The lesions that were diagnosed as dysplasia did not retain stain, and thus gave false-negative results. The reasons could be that the exact mechanisms by which the dye differentially stains malignant or dysplastic tissues remain unknown. Staining specificity was 65% because the inflammatory lesions were eliminated for the first time and re-stained after 14 days. In lesions without epithelial dysplasia or atypical cells, false positivity was 35%.

Hegde et al[15] found a sensitivity of 97.29% and specificity of 62.5%. False positivity of 7.69% and false negativity of 16.67% was noticed. The authors suggested that specificity was reduced because of retention of the dye in some benign lesions. Gupta et al[20] demonstrated sensitivity of 96.9% and specificity of 86% for detection of malignancy. The false-positive rate was 14%, which could be due to ulcerated, inflammatory, or traumatic lesions. The study also showed 64% sensitivity and 86% specificity for premalignant lesions.

False-positive retention in nondysplastic conditions has been reported with varying frequency. Mashberg [14] reported a false-positive rate of 8.5%. They suggested that false positivity could be reduced by a second examination typically 14 days later that assisted in excluding lesions where staining was associated with inflammation.

Selective staining of malignant and dysplastic cells might be explained by the fact that these cells contain quantitatively more nucleic acid than normal tissue. In vivo TB staining might be the result of immediate binding of sulfated mucopolysaccharides, which are found in higher quantity in tissues that are actively growing, such as tumors and tissues that are healing which may explain false-positive results. [17] A study by Martin et al[21] showed 42% false negative for in situ carcinoma and 58% false negativity in epithelial dysplasia. This could be due to the sample analyzed and the fact that these authors considered only lesions with stippled or dark blue staining as positive.

Problems with studies of TB include that no studies were carried out in a primary care environment, data from studies in secondary care are not necessarily applicable to general population, no randomized controlled trials, some studies only include carcinoma or dysplasias, and some include both (no uniformity), histologic diagnosis is rarely used as the "gold standard," no single standard staining method used, confusion over inclusion of equivocal (pale) staining as positive or negative. [7]

TB application is an important adjunct to the clinical examination because it may not only increase the clinical suspicion of the examination but also assist in identifying sites in need of biopsy and delineating margins of the lesions, which may lead to a more timely diagnosis allowing benefits of earlier treatment and in directing surgical management. [22] Although the specificity of the technique is less which could be attributed to the inability to biopsy normal tissues which does not take up TB, it can still be used as an important adjuvant as a diagnostic aid because in a clinical setting, false-positive results are of less concern than false-negative results and any positive findings should be confirmed on biopsy for the presence of dysplasia or carcinoma. In addition, any lesion that is not clinically suspicious but shows TB uptake (due to irritating and inflammatory factors) should be re-evaluated after 10-14 days after the regression of the condition. If TB positivity still persists, the lesion should be considered suspicious and biopsy should be performed to rule out carcinoma. A uniform staining methods and interpretation (e.g., doubts regarding inclusion of equivocal staining as positive or negative) would further enhance the utility of TB staining. As evident from the previous literature, most of the studies were done using insufficient parameters; further studies comprising all the relevant parameters (normal, inflammatory, preneoplasia, and neoplasia) would validate the routine use of TB as a vital stain.

   References Top

1.Epstein JB, Scully C, Spinelli J. Toluidine blue and Lugol's iodine application in the assessment of oral malignant disease and lesions at risk of malignancy. J Oral Pathol Med 1992;21:160-3.  Back to cited text no. 1
2.Epstein JB, Oakley C, Millner A, Emerton S, van der Meij E, Le N. The utility of toluidine blue application as a diagnostic aid in patients previously treated for upper oropharyngeal carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;83:537-47.  Back to cited text no. 2
3.Gandalfo S, Pentenero M, Broccoletti R, Pagano M, Carrozzo M, Scully C. Toluidine blue uptake in potentially malignant lesions in vivo: Clinical and histological assessment. Oral Oncol 2006;42:89-95.  Back to cited text no. 3
4.Culling CF, Allison TR. Cellular Pathology Technique. 4 th ed. London: Butterworths; 1985.  Back to cited text no. 4
5.Siddiqui IA, Farooq MU, Siddiqyi RA, Rafe SM. Role of toluidine blue in early detection of oral cancer. Pak J Med Sci Q 2006;22:184-7.  Back to cited text no. 5
6.Warnakulasuriya KA, Johnson NW. Sensitivity and specificity of OraScanÒ toluidine blue mouthrinse in the detection of oral cancer and precancer. J Oral Pathol Med 1996;25:97-103.  Back to cited text no. 6
7.Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol 2008;44:10-22.  Back to cited text no. 7
8.Drupy RA, Wallington EA. Carleton's Histological Technique. 5 th ed. Oxford University Press; 1980.  Back to cited text no. 8
9.Kumar GL, Kiernan JA. Education guide: Special stains and H & E. 2 nd ed. Dako North America, California: 2010.  Back to cited text no. 9
10.Staining theory. Cell Path. E-book. Available from: http://www.scionpublishing.com. [Last accessed on 2011 Nov 11]. P. 67- 104.  Back to cited text no. 10
11.Bancroft J, Gamble. Theory and Practice of Histological Techniques. 5 th ed. Philadelphia: Churchill Livingstone; 2005.  Back to cited text no. 11
12.Miller RL, Simms BW, Gould AR. Toluidine blue staining for detection of oral premalignant lesions and carcinomas. J Oral Pathol Med 1988;17:73-8.  Back to cited text no. 12
13.Onofre MA, Sposto MR, Navarro CM. Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:535-40.  Back to cited text no. 13
14.Mashberg A. Reevaluation of toluidine blue application as A diagnostic adjunct in the detection of asymptomatic oral squamous cell carcinoma: a continuing prospective study of oral cancer III. Cancer 1980;46:758-63.  Back to cited text no. 14
15.Hegde CM, Kamath PN, Sreedharan S, Dannana NK, Raju RM. Supravital staining: It's role in detecting early malignancies. Indian J Otolaryngol Head Neck Surg 2006;58:31-4.  Back to cited text no. 15
16.Reddy CR, Ramulu C, Sundareshwar B, Raju MV, Gopal R, Sarma R. Toluidine blue staining of oral cancer and precancerous lesions. Indian J Med Res 1973;61:1161-4.  Back to cited text no. 16
17.Silverman S Jr, Migliorati C, Barbosa J. Toluidine blue staining in the detection of oral precancerous and malignant lesions. Oral Surg Oral Med Oral Pathol 1984;57:379-82.  Back to cited text no. 17
18.Onofre MA, Sposto MR, Navarro CM, Scully C. Assessment of blue toluidine stain in oral lesions with suspicions of malignancy. J Dent Res 1995;74:782.  Back to cited text no. 18
19.Rosenberg D, Cretin S. Use of meta-analysis to evaluate tolonium chloride in oral cancer screening. Oral Surg Oral Med Oral Pathol 1989;67:621-7.  Back to cited text no. 19
20.Gupta A, Singh M, Ibrahim R, Mehrotra R. Utility of toluidine blue staining and brush biopsy in precancerous and cancerous oral lesions. Acta Cytol 2007;51:788-94.  Back to cited text no. 20
21.Martin IC, Kerawala CJ, Reed M. The application of toluidine blue as a diagnostic adjunct in the detection of epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:444-6.  Back to cited text no. 21
22.Portugal LG, Wilson KM, Biddinger PW, Gluckman JL. The role of toluidine blue in assessing margin status after resection of squamous cell carcinoma of upper aerodigestive tract. Arch Otolaryngol Head Neck Surg 1996;122:517-9.  Back to cited text no. 22


  [Table 1]

This article has been cited by
1 Disease-specific glycosaminoglycan patterns in the extracellular matrix of human lung and brain
Maria Ennemoser, Alexandra Pum, Andreas Kungl
Carbohydrate Research. 2022; 511: 108480
[Pubmed] | [DOI]
2 Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining
Lei Kang, Xiufeng Li, Yan Zhang, Terence T.W. Wong
Photoacoustics. 2022; 25: 100308
[Pubmed] | [DOI]
3 Impact of riboflavin mediated photodynamic disinfection around fixed orthodontic system infected with oral bacteria
Muhammad Abdullah Kamran, Muhammad Qasim, Samuel Ebele Udeabor, Mohammad Shahul Hameed, Master Luqman Mannakandath, Ibrahim Alshahrani
Photodiagnosis and Photodynamic Therapy. 2021; 34: 102232
[Pubmed] | [DOI]
4 Induced photo-cytotoxicity on prostate cancer cells with the photodynamic action of toluidine Blue ortho
Nermin Topaloglu, Emel Bakay, Merve Yünlü, Günnur Onak
Photodiagnosis and Photodynamic Therapy. 2021; 34: 102306
[Pubmed] | [DOI]
5 Polymyxin B-Triggered Assembly of Peptide Hydrogels for Localized and Sustained Release of Combined Antimicrobial Therapy
Yejiao Shi, David W. Wareham, Yichen Yuan, Xinru Deng, Alvaro Mata, Helena S. Azevedo
Advanced Healthcare Materials. 2021; 10(22): 2101465
[Pubmed] | [DOI]
6 Photodynamic sensitizers modulate cytoskeleton structural dynamics in neuronal cells
Tushar Dubey, Subashchandrabose Chinnathambi
Cytoskeleton. 2021; 78(6): 232
[Pubmed] | [DOI]
7 An overview of the current clinical status of optical imaging in head and neck cancer with a focus on Narrow Band imaging and fluorescence optical imaging
Jeroen E. van Schaik, Gyorgy B. Halmos, Max J.H. Witjes, Boudewijn E.C. Plaat
Oral Oncology. 2021; 121: 105504
[Pubmed] | [DOI]
8 Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes
Lara L. Reys, Simone S. Silva, Catarina Oliveira, Nuno M. Neves, Albino Martins, Rui L. Reis, Tiago H. Silva
International Journal of Biological Macromolecules. 2021; 183: 695
[Pubmed] | [DOI]
9 Recombinant sugarcane cystatin CaneCPI-5 down regulates inflammation and promotes angiogenesis and collagen deposition in a mouse subcutaneous sponge model
Bruno Antonio Ferreira, Danyelle Toyama, Flávio Henrique-Silva, Fernanda de Assis Araújo
International Immunopharmacology. 2021; 96: 107801
[Pubmed] | [DOI]
10 Jararhagin-C, a disintegrin-like protein, improves wound healing in mice through stimulation of M2-like macrophage, angiogenesis and collagen deposition
Bruno Antonio Ferreira, Francyelle Borges Rosa De Moura, Tatiana Carla Tomiosso, Natássia Caroline Resende Corrêa, Luiz Ricardo Goulart, Lucíola Silva Barcelos, Patrícia Bianca Clissa, Fernanda de Assis Araújo
International Immunopharmacology. 2021; 101: 108224
[Pubmed] | [DOI]
11 Synthesis and evaluation of metallic nanoparticles-based vaccines against Candida albicans infections
Maii A. Abdelnaby, Kamel R. Shoueir, Amany A. Ghazy, Sarah M. Abdelhamid, Maged A. El Kemary, Hoda E. Mahmoud, Kholoud Baraka, Rania R. Abozahra
Journal of Drug Delivery Science and Technology. 2021; : 102862
[Pubmed] | [DOI]
12 Variability in the degree of euryhalinity of neotropical estuarine annelids
Serena Mucciolo, Andrea Desiderato, Selene Miranda Leal, Maria Mastrodonato, Paulo Lana, Carolina Arruda Freire
Journal of Experimental Marine Biology and Ecology. 2021; 544: 151617
[Pubmed] | [DOI]
13 Oral administration of hydrolysates of cartilage extract in the prevention of osteoarthritis
Chengcheng Ma, Mingxiao Yu, Zhoujin Huang, Jingfeng Wang, Xue Zhao, Chunmei Kang, Hao Xu, Yanchao Wang, Hu Hou
Journal of Functional Foods. 2021; 78: 104376
[Pubmed] | [DOI]
14 Hot-melt extrusion of photodynamic antimicrobial polymers for prevention of microbial contamination
Matthew P. Wylie, Nicola J. Irwin, David Howard, Katie Heydon, Colin P. McCoy
Journal of Photochemistry and Photobiology B: Biology. 2021; 214: 112098
[Pubmed] | [DOI]
15 Reprogramming sphingolipid glycosylation is required for endosymbiont persistence in Medicago truncatula
William M. Moore, Candace Chan, Toshiki Ishikawa, Emilie A. Rennie, Heidi M.-L. Wipf, Veronica Benites, Maki Kawai-Yamada, Jenny C. Mortimer, Henrik V. Scheller
Current Biology. 2021; 31(11): 2374
[Pubmed] | [DOI]
16 Evaluate the Effectiveness of Toluidine Blue for Obtaining Safe Margins in Resection of Oral Squamous Cell Carcinoma
Neelakamal Hallur, Aaisha Siddiqa, Syed Zakaullah, Chaitanya Kothari, Shereen Fatima, K Tejaswini
Journal of Maxillofacial and Oral Surgery. 2021;
[Pubmed] | [DOI]
17 Combined histochemical approach in assessing tryptase expression in the mast cell population
D.A. Atiakshin, V.V. Shishkina, O.A. Gerasimova, V.Y. Meshkova, N.Y. Samodurova, T.V. Samoilenko, I.B. Buchwalow, V.E. Samoilova, M. Tiemann
Acta Histochemica. 2021; 123(4): 151711
[Pubmed] | [DOI]
18 Fluorescence sensing of heparin and heparin-like glycosaminoglycans by stabilizing intramolecular charge transfer state of dansyl acid-labeled AG73 peptides with glutathione-capped gold nanoclusters
Wei-Bin Tseng, Yi-Shiuan Chou, Cheng-Zong Lu, Manivannan Madhu, Chi-Yu Lu, Wei-Lung Tseng
Biosensors and Bioelectronics. 2021; 193: 113522
[Pubmed] | [DOI]
19 Studying nerve transfers: Searching for a consensus in nerve axons count
Alfio Luca Costa, Nikolaos Papadopulos, Andrea Porzionato, Konstantinos Natsis, Franco Bassetto, Cesare Tiengo, Riccardo Giunta, Francisco Soldado, Jayme Augusto Bertelli, Alfonso Rodrìguez Baeza, Bruno Battiston, Paolo Titolo, Pierluigi Tos, Christine Radtke, Oscar Aszmann, Francesco Moschella, Adriana Cordova, Francesca Toia, Rosario Emanuele Perrotta, Guilia Ronchi, Stefano Geuna, Michele Rosario Colonna
Journal of Plastic, Reconstructive & Aesthetic Surgery. 2021; 74(10): 2731
[Pubmed] | [DOI]
20 A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer
Paula Demétrio de Souza França, Susanne Kossatz, Christian Brand, Daniella Karassawa Zanoni, Sheryl Roberts, Navjot Guru, Dauren Adilbay, Audrey Mauguen, Cristina Valero Mayor, Wolfgang A. Weber, Heiko Schöder, Ronald A. Ghossein, Ian Ganly, Snehal G. Patel, Thomas Reiner
European Journal of Nuclear Medicine and Molecular Imaging. 2021; 48(11): 3618
[Pubmed] | [DOI]
21 Synthesis and characterization of a bovine collagen: GAG scaffold with Uruguayan raw material for tissue engineering
L. Pereira, L. Echarte, M. Romero, G. Grazioli, H. Pérez-Campos, A. Francia, W. Vicentino, A. W. Mombrú, R. Faccio, I. Álvarez, C. Touriño, H. Pardo
Cell and Tissue Banking. 2021;
[Pubmed] | [DOI]
22 Morpho-anatomical changes and antioxidant enzyme activity during the acclimatization of Genipa americana
Rafaela Ribeiro de Souza, Patrícia Duarte de Oliveira Paiva, Afonso Ricardo de Souza, Raphael Reis da Silva, Diogo Pedrosa Corrêa da Silva, Michele Valquíria dos Reis, Renato Paiva
Acta Physiologiae Plantarum. 2021; 43(6)
[Pubmed] | [DOI]
23 Bisphosphonate-Conjugated Photo-Crosslinking Polyanionic Hyaluronic Acid Microbeads for Controlled BMP2 Delivery and Enhanced Bone Formation Efficacy
Ratchapol Jenjob, Hong-Phuong Nguyen, Min-Kyoung Kim, Yixin Jiang, Jung Joo Kim, Su-Geun Yang
Biomacromolecules. 2021; 22(10): 4138
[Pubmed] | [DOI]
24 Amplify antimicrobial photo dynamic therapy efficacy with poly-beta-amino esters (PBAEs)
Stefano Perni, Emily C. Preedy, Polina Prokopovich
Scientific Reports. 2021; 11(1)
[Pubmed] | [DOI]
25 Current and emerging techniques for oral cancer screening and diagnosis: a review
Sapna R Bisht, Pratibha Mishra, Deep Yadav, Rakesh Rawal, Karla P Mercado-Shekhar
Progress in Biomedical Engineering. 2021; 3(4): 042003
[Pubmed] | [DOI]
26 Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review
Himanshu Patel
Blood Coagulation & Fibrinolysis. 2021; 32(4): 237
[Pubmed] | [DOI]
27 Adaptive trait syndromes along multiple economic spectra define cold and warm adapted ecotypes in a widely distributed foundation tree species
Davis E. Blasini, Dan F. Koepke, Kevin C. Grady, Gerard J. Allan, Catherine A. Gehring, Thomas G. Whitham, Samuel A. Cushman, Kevin R. Hultine, Giovanna Battipaglia
Journal of Ecology. 2021; 109(3): 1298
[Pubmed] | [DOI]
28 Sexual dimorphism in the parasitic snail Nanobalcis worsfoldi: a histological and morphometric approach with insights for the family Eulimidae
Licia Sales, Vinicius Queiroz
Canadian Journal of Zoology. 2021; 99(11): 995
[Pubmed] | [DOI]
29 Methods to study organogenesis in decapod crustacean larvae II: analysing cells and tissues
R. R. Melzer, F. Spitzner, Z. Šargac, M. K. Hörnig, J. Krieger, C. Haug, J. T. Haug, T. Kirchhoff, R. Meth, G. Torres, S. Harzsch
Helgoland Marine Research. 2021; 75(1)
[Pubmed] | [DOI]
30 Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al2O3
Zhipeng Zha, Runcheng Liu, Wen Yang, Can Li, Jinjuan Gao, Muhammad Shafi, Xiuwei Fan, Zhen Li, Xuejian Du, Shouzhen Jiang
Optics Express. 2021; 29(6): 8890
[Pubmed] | [DOI]
31 Sequential Deposition and Remodeling of Cell Wall Polymers During Tomato Pollen Development
Syeda Roop Fatima Jaffri, Cora A. MacAlister
Frontiers in Plant Science. 2021; 12
[Pubmed] | [DOI]
32 Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review
Wei Yin Lim, Boon Leong Lan, Narayanan Ramakrishnan
Biosensors. 2021; 11(11): 434
[Pubmed] | [DOI]
33 Noninvasive Imaging Methods to Improve the Diagnosis of Oral Carcinoma and Its Precursors: State of the Art and Proposal of a Three-Step Diagnostic Process
Antonio Romano, Dario Di Stasio, Massimo Petruzzi, Fausto Fiori, Carlo Lajolo, Andrea Santarelli, Alberta Lucchese, Rosario Serpico, Maria Contaldo
Cancers. 2021; 13(12): 2864
[Pubmed] | [DOI]
34 Interactions between Cationic Dye Toluidine Blue and Fibrous Clay Minerals
Qingfeng Wu, Kristen Carlson, Qi Cheng, Xisen Wang, Zhaohui Li
Crystals. 2021; 11(6): 708
[Pubmed] | [DOI]
35 Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite
Yan Shi, Xisen Wang, Xin Wang, Kristen Carlson, Zhaohui Li
Crystals. 2021; 11(10): 1181
[Pubmed] | [DOI]
36 Chrysin Inhibits TNFa-Induced TSLP Expression through Downregulation of EGR1 Expression in Keratinocytes
Hyunjin Yeo, Young Han Lee, Sung Shin Ahn, Euitaek Jung, Yoongho Lim, Soon Young Shin
International Journal of Molecular Sciences. 2021; 22(9): 4350
[Pubmed] | [DOI]
37 Large Animal Model of Osteoporotic Defect Healing: An Alternative to Metaphyseal Defect Model
Markus Rupp, Christoph Biehl, Deeksha Malhan, Fathi Hassan, Sameh Attia, Sebastian Rosch, Annemarie B. Schäfer, Erin McMahon, Marian Kampschulte, Christian Heiss, Thaqif El Khassawna
Life. 2021; 11(3): 254
[Pubmed] | [DOI]
38 Photosensitizers Mediated Photodynamic Inactivation against Fungi
Daniel Ziental, Dariusz T. Mlynarczyk, Beata Czarczynska-Goslinska, Konrad Lewandowski, Lukasz Sobotta
Nanomaterials. 2021; 11(11): 2883
[Pubmed] | [DOI]
39 Recent Advances in Photodynamic Therapy against Fungal Keratitis
Jia-Horung Hung, Chaw-Ning Lee, Huai-Wen Hsu, I-Son Ng, Chi-Jung Wu, Chun-Keung Yu, Nan-Yao Lee, Yun Chang, Tak-Wah Wong
Pharmaceutics. 2021; 13(12): 2011
[Pubmed] | [DOI]
40 Toward Physicochemical and Rheological Characterization of Different Injectable Hyaluronic Acid Dermal Fillers Cross-Linked with Polyethylene Glycol Diglycidyl Ether
Nicola Zerbinati, Sabrina Sommatis, Cristina Maccario, Maria Chiara Capillo, Giulia Grimaldi, Giuseppe Alonci, Marina Protasoni, Raffaele Rauso, Roberto Mocchi
Polymers. 2021; 13(6): 948
[Pubmed] | [DOI]
41 The Effect of Temperature on the Biosorption of Dyes from Aqueous Solutions
Lech Smoczynski, Boguslaw Pierozynski, Tomasz Mikolajczyk
Processes. 2020; 8(6): 636
[Pubmed] | [DOI]
42 The anatomy and histochemistry of Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae)
NA Akwu, Y Naidoo, M Singh
Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie. 2020; 39(1): 91
[Pubmed] | [DOI]
43 Neurocognitive investigation of Morinda tinctoria against amyloid beta-induced oxidative insult and cognitive impairment in albino mice: A phytotherapeutic approach
D Sivaraman, M Arun, R Kannan, PS Pradeep, P Muralidharan
Pharmacognosy Magazine. 2020; 16(70): 255
[Pubmed] | [DOI]
44 A Comparative Study of Mast Cells Count in Different Histological Grades of Oral Squamous Cell Carcinoma by Using Toluidine Blue Stain
Keerthi V Narayan, Grace Sonia, Parikshya Shrestha, Girish Hemadala
Cureus. 2020;
[Pubmed] | [DOI]
45 Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer
Petr Snetkov, Kseniia Zakharova, Svetlana Morozkina, Roman Olekhnovich, Mayya Uspenskaya
Polymers. 2020; 12(8): 1800
[Pubmed] | [DOI]
46 Increased blood-brain barrier hyperpermeability coincides with mast cell activation early under cuprizone administration
John Shelestak, Naveen Singhal, Lana Frankle, Riely Tomor, Sarah Sternbach, Jennifer McDonough, Ernest Freeman, Robert Clements, Mária A. Deli
PLOS ONE. 2020; 15(6): e0234001
[Pubmed] | [DOI]
47 The spatial and temporal distribution of cationic and anionic radicals in early embryo implantation
Zhikun Bai
Open Chemistry. 2020; 18(1): 1075
[Pubmed] | [DOI]
48 Vital Staining- Pivotal Role in the Field of Pathology
K Nitya, Amberkar Vikram S, Nadar Bhuvaneshwari G
Annals of Cytology and Pathology. 2020; 5(1): 058
[Pubmed] | [DOI]
49 Novel histochemical approach for evaluation of tryptase expression in the mast cell population
D. A. Atyakshin, O. A. Gerasimova, V. Yu Meshkova, N. Yu. Samodurova, T. V. Samoilenko, V. V. Shishkina
Journal of Anatomy and Histopathology. 2020; 9(3): 94
[Pubmed] | [DOI]
50 The effects of zinc oxide non-eugenol and cellulose as periodontal dressings on open wounds after periodontal surgery
Yoeliani Budisidharta, Ahmad Syaify, Sri Pramestri Lastianny
Dental Journal (Majalah Kedokteran Gigi). 2020; 53(1): 45
[Pubmed] | [DOI]
51 Spectroscopic Studies on the Biomolecular Recognition of Toluidine Blue: Key Information Towards Development of a Non-Contact, Non-Invasive Device for Oral Cancer Detection
Soumendra Singh, Animesh Halder, Oindrila Sinha, Nilasha Chakrabarty, Tanima Chatterjee, Aniruddha Adhikari, Priya Singh, Deep Shikha, Ria Ghosh, Amrita Banerjee, Partha Pratim Das Mahapatra, Amit Mandhar, Maitree Bhattacharyya, Surajit Bose, Saleh A. Ahmed, Ahmed Alharbi, Ahmed M. Hameed, Samir Kumar Pal
Frontiers in Oncology. 2020; 10
[Pubmed] | [DOI]
52 Could high DNA stainability (HDS) be a valuable indicator of sperm nuclear integrity?
Z. Mohammadi, M. Tavalaee, P. Gharagozloo, J. R. Drevet, M. H. Nasr-Esfahani
Basic and Clinical Andrology. 2020; 30(1)
[Pubmed] | [DOI]
53 A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function
Lena Dehnen, Maren Janz, Jitender Kumar Verma, Olympia Ekaterini Psathaki, Lars Langemeyer, Florian Fröhlich, Jürgen J. Heinisch, Heiko Meyer, Christian Ungermann, Achim Paululat
Journal of Cell Science. 2020;
[Pubmed] | [DOI]
54 Discovery of granulocyte-lineage cells in the skin of the amphibianXenopus laevis
Kelsey Hauser, Milan Popovic, Amulya Yaparla, Daphne V. Koubourli, Phillip Reeves, Aashish Batheja, Rose Webb, María J. Forzán, Leon Grayfer, David Lesbarrères
FACETS. 2020; 5(1): 571
[Pubmed] | [DOI]
55 Polymethacrylate Sphere-Based Assay for Ultrasensitive miRNA Detection
Samira Hosseini, Patricia Vázquez-Villegas, Richard C. Willson, Marco Rito-Palomares, Margarita Sanchez-Dominguez, Leo H. Koole, Marc J. Madou, Sergio O. Martínez-Chapa
Advances in Polymer Technology. 2020; 2020: 1
[Pubmed] | [DOI]
56 Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes
María González-Hourcade, Eva M. Campo, Marcia R. Braga, Antonio Salgado, Leonardo M. Casano
Environmental Microbiology. 2020; 22(8): 3096
[Pubmed] | [DOI]
57 Synthesis and electroanalytical behaviour of AgNPs/graphite conductive nano-ink towards biosensing of bacteria genome in human biofluids
Ahmad Mobed, Mohammad Hasanzadeh, Arezoo Saadati, Soodabeh Hassanpour
Analytical Methods. 2020; 12(9): 1218
[Pubmed] | [DOI]
58 Photodynamic therapy of oral lichen planus
Juliane Hesse, Andreas Schmalfuss, Sigrid. I. Kvaal
Photochemical & Photobiological Sciences. 2020; 19(10): 1271
[Pubmed] | [DOI]
59 Sesquiterpene Polygodial from Drimys brasiliensis (Winteraceae) Down-Regulates Implant-Induced Inflammation and Fibrogenesis in Mice
Bruno Antonio Ferreira, Anderson Ferraz Norton Filho, Simone Ramos Deconte, Tatiana Carla Tomiosso, Fernanda Thevenard, Silvia Passos Andrade, João Henrique Ghilardi Lago, Fernanda de Assis Araújo
Journal of Natural Products. 2020; 83(12): 3698
[Pubmed] | [DOI]
60 Evaluation of the Role of Toluidine Blue Paint as an Adjunctive Method to Biopsy in Suspicious Oral Lesion: A Hospital Based Study
Neeraj Aggarwal, Tanaya Panja, Sirshak Dutta, Ramanuj Sinha, Agrima Mittal
Indian Journal of Otolaryngology and Head & Neck Surgery. 2020;
[Pubmed] | [DOI]
61 Protein bioaccessibility from mycoprotein hyphal structure: In vitro investigation of underlying mechanisms
Raffaele Colosimo, Frederick J. Warren, Tim J.A. Finnigan, Peter J. Wilde
Food Chemistry. 2020; 330: 127252
[Pubmed] | [DOI]
62 Inhibitory effect of natural metal ion chelators on the autolysis of sea cucumber (Stichopus japonicus) and its mechanism
Zi-qiang Liu, Da-yong Zhou, Yu-xin Liu, Man-man Yu, Bing Liu, Liang Song, Xiu-ping Dong, Hang Qi, Fereidoon Shahidi
Food Research International. 2020; 133: 109205
[Pubmed] | [DOI]
63 Role of biochemical and mechanical disintegration on ß-carotene release from steamed and fried sweet potatoes during in vitro gastric digestion
Geeshani Somaratne, Aiqian Ye, Francoise Nau, Maria J. Ferrua, Didier Dupont, R. Paul Singh, Jaspreet Singh
Food Research International. 2020; 136: 109481
[Pubmed] | [DOI]
64 Application of double network of gellan gum and pullulan for bone marrow stem cells differentiation towards chondrogenesis by controlling viscous substrates
Ain Park, Joo Hee Choi, Sumi Lee, Suyoung Been, Jeong Eun Song, Gilson Khang
Journal of Tissue Engineering and Regenerative Medicine. 2020; 14(11): 1592
[Pubmed] | [DOI]
65 Foliar micromorphology, ultrastructure, and histochemical analysis of Barleria albostellata C.B. Clarke
S. Gangaram, Y. Naidoo, Y.H. Dewir
South African Journal of Botany. 2020; 135: 212
[Pubmed] | [DOI]
66 A novel ultrasensitive photoelectrochemical biosensor for detecting microRNA 21 based on cosensitization strategy and p-n heterojunction quenching mode
Hui Meng, Pingkun Liu, Fangjing Mo, Min Chen, Yingzi Fu
Sensors and Actuators B: Chemical. 2020; 325: 128782
[Pubmed] | [DOI]
67 Visualization of Bacterial Colonization and Cellular Layers in a Gut-on-a-Chip System Using Optical Coherence Tomography
Lu Yuan, Pim de Haan, Brandon W. Peterson, Ed D. de Jong, Elisabeth Verpoorte, Henny C. van der Mei, Henk J. Busscher
Microscopy and Microanalysis. 2020; 26(6): 1211
[Pubmed] | [DOI]
68 Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells
Catarina Oliveira, Ana I. Soares, Nuno M. Neves, Rui L. Reis, Alexandra P. Marques, Tiago H. Silva, Albino Martins
Biomacromolecules. 2020; 21(7): 2745
[Pubmed] | [DOI]
69 Tension induces intervertebral disc degeneration via endoplasmic reticulum stress-mediated autophagy
Jiangwei Chen, Zunwen Lin, Kui Deng, Bin Shao, Dong Yang
Bioscience Reports. 2019; 39(8)
[Pubmed] | [DOI]
70 Mechanisms that minimize retinal impact of apolipoprotein E absence
Aicha Saadane, Alexey Petrov, Natalia Mast, Nicole El-Darzi, Tung Dao, Ahab Alnemri, Ying Song, Joshua L. Dunaief, Irina A. Pikuleva
Journal of Lipid Research. 2018; 59(12): 2368
[Pubmed] | [DOI]
71 Noninvasive diagnostic adjuncts for the evaluation of potentially premalignant oral epithelial lesions: current limitations and future directions
Eric C. Yang, Melody T. Tan, Richard A. Schwarz, Rebecca R. Richards-Kortum, Ann M. Gillenwater, Nadarajah Vigneswaran
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2018; 125(6): 670
[Pubmed] | [DOI]
72 Surfen-Assembled Graphene Oxide for Fluorescence Turn-On Detection of Sulfated Glycosaminoglycans in Biological Matrix
Yen-Ting Wang, Wei-Lung Tseng
ACS Sensors. 2017; 2(6): 748
[Pubmed] | [DOI]
73 DNA Redox Hydrogels: Improving Mediated Enzymatic Bioelectrocatalysis
Khiem Van Nguyen, Yaovi Holade, Shelley D. Minteer
ACS Catalysis. 2016; 6(4): 2603
[Pubmed] | [DOI]
74 Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation
José A. González-Delgado, Patrick J. Kennedy, Marta Ferreira, João P. C. Tomé, Bruno Sarmento
Journal of Medicinal Chemistry. 2016; 59(10): 4428
[Pubmed] | [DOI]
75 Identification of the chemical form of sulfur compounds in the Japanese pink coral (Corallium elatius) skeleton using µ-XRF/XAS speciation mapping
Yusuke Tamenori,Toshihiro Yoshimura,Nguyen Trong Luan,Hiroshi Hasegawa,Atsushi Suzuki,Hodaka Kawahata,Nozomu Iwasaki
Journal of Structural Biology. 2014; 186(2): 214
[Pubmed] | [DOI]
76 Histological and Micro-CT Evidence of Stigmatic Rostellum Receptivity Promoting Auto-Pollination in the Madagascan Orchid Bulbophyllum bicoloratum
Gamisch, A. and Staedler, Y.M. and Schönenberger, J. and Fischer, G.A. and Comes, H.P.
PLoS ONE. 2013; 8(8)
77 PTH promotes allograft integration in a calvarial bone defect
Sheyn, D., Cohn Yakubovich, D., Kallai, I.,Gazit, D., Gazit, Z.
Molecular Pharmaceutics. 2013; 10(12): 4462-4471
78 Magnesium deficiency induces the emergence of mast cells in the liver of rats
Takemoto, S., Yamamoto, A., Tomonaga, S., Funaba, M., Matsui, T.
Journal of Nutritional Science and Vitaminology. 2013; 59(6): 560-563
79 Dynamically observing chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro
Feng, J.-W., Wang, Y., Lü, B., (...), Zhu, Z.-D., Tan, B.
Chinese Journal of Tissue Engineering Research. 2013; 17(36): 6409-6416
80 PTH Promotes Allograft Integration in a Calvarial Bone Defect
Dmitriy Sheyn, Doron Cohn Yakubovich, Ilan Kallai, Susan Su, Xiaoyu Da, Gadi Pelled, Wafa Tawackoli, Galen Cook-Weins, Edward M. Schwarz, Dan Gazit, Zulma Gazit
Molecular Pharmaceutics. 2013; 10(12): 4462
[Pubmed] | [DOI]
81 Fiber bundle endocytoscopy
Michael Hughes,Tou Pin Chang,Guang-Zhong Yang
Biomedical Optics Express. 2013; 4(12): 2781
[Pubmed] | [DOI]


Print this article  Email this article


    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (445 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

   Tissue Staining
    Application of T...
   Vital Staining
    Article Tables

 Article Access Statistics
    PDF Downloaded2433    
    Comments [Add]    
    Cited by others 81    

Recommend this journal

© Journal of Oral and Maxillofacial Pathology | Published by Wolters Kluwer - Medknow
Online since 15th Aug, 2007