|
|
REVIEW ARTICLE |
|
|
|
|
Year : 2014 | Volume
: 18
| Issue : 4 | Page : 81-85 |
|
Oral candidiasis: An overview
Arun Singh1, Renuka Verma2, Aditi Murari3, Ashutosh Agrawal3
1 Departments of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India 2 Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, Uttar Pradesh, India 3 Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
Date of Submission | 07-Jan-2013 |
Date of Acceptance | 25-Jun-2014 |
Date of Web Publication | 20-Sep-2014 |
Correspondence Address: Ashutosh Agrawal Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Bareilly - 243 006, Uttar Pradesh India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-029X.141325
Abstract | | |
Candida is the shortened name used to describe a class of fungi that includes more than 150 species of yeast. In healthy individuals, Candida exists harmlessly in mucus membranes such as your ears, eyes, gastrointestinal tract, mouth, nose, reproductive organs, sinuses, skin, stool and vagina, etc. It is known as your "beneficial flora" and has a useful purpose in the body. When an imbalance in the normal flora occurs, it causes an overgrowth of Candida albicans. The term is Candidiasis or Thrush. This is a fungal infection (Mycosis) of any of the Candida species, of which Candida albicans is the most common. When this happens, it can create a widespread havoc to our overall health and well-being of our body.
Keywords: Candida albicans, fungi, yeast, mitosporic fungi, oral thrush, mycosis
How to cite this article: Singh A, Verma R, Murari A, Agrawal A. Oral candidiasis: An overview
. J Oral Maxillofac Pathol 2014;18, Suppl S1:81-5 |
Introduction | |  |
Fungi are free-living, eukaryotic organisms that exist as yeasts (round fungi), moulds (filamentous fungi), or a combination of these two (dimorphic fungi). Oral candidiasis is one of the common fungal infection, affecting the oral mucosa. These lesions are caused by the yeast Candida albicans. Candida albicans are one of the components of normal oral microflora and around 30% to 50% people carry this organism. Rate of carriage increases with age of the patient. Candida albicans are recovered from 60% of dentate patient's mouth over the age of 60 years. There are many types of Candida species, which are seen in the oral cavity. [1],[2] Species of oral Candida are: C. albicans, C. glabrata, C. guillermondii, C. krusei, C. parapsilosis, C. pseudotropicalis, C. stellatoidea, C. tropicalis. [3]
Proposed revised classification of Oral Candidosis [4]Primary oral candidosis (Group I)
- Acute
- Pseudomembranous
- Erythematous
- Chronic
- Erythematous
- Pseudomembranous
- Hyperplastic
- Nodular
- Plaque-like
- Candida-associated lesions
- Angular cheilitis
- Denture stomatitis
- Median rhomboid glossitis
- Keratinized primary lesions superinfected with Candida
- Leukoplakia
- Lichen planus
- Lupus erythematosus.
Secondary oral candidoses (Group II)
Oral manifestations of Systemic mucocutaneous.
Candidosis (due to diseases such as thymic aplasia and candidosis endocrinopathy syndrome).
Risk factors | |  |
Pathogen
Candida is a fungus and was first isolated in 1844 from the sputum of a tuberculosis patient. [5] Like other fungi, they are non-photosynthetic, eukaryotic organisms with a cell wall that lies external to the plasma membrane. There is a nuclear pore complex within the nuclear membrane. The plasma membrane contains large quantities of sterols, usually ergosterol. Apart from a few exceptions, the macroscopic and microscopic cultural characteristics of the different candida species are similar. They can metabolize glucose under both aerobic and anaerobic conditions. Temperature influences their growth with higher temperatures such as 37°C that are present in their potential host, promoting the growth of pseudohyphae. They have been isolated from animals and environmental sources. They require environmental sources of fixed carbon for their growth. Filamentous growth and apical extension of the filament and formation of lateral branches are seen with hyphae and mycelium and single cell division is associated with yeasts. [6] Several studies have demonstrated that infection with candida is associated with certain pathogenic variables. Adhesion of candida to epithelial cell walls, an important step in initiation of infection, is promoted by certain fungal cell wall components such as mannose, C3d receptors, mannoprotein and saccharins. [7],[8],[9] Other factors implicated are germ tube formation, presence of mycelia, persistence within epithelial cells, endotoxins, induction of tumor necrosis factor and proteinases. [10],[11],[12] Phenotypic switching which is the ability of certain strains of C. albicans to change between different morphologic phenotypes has also been implicated. [13]
Host
Local factors
Impaired salivary gland function can predispose to oral candidiasis. Antimicrobial proteins in the saliva such as lactoferrin, sialoperoxidase, lysozyme, histidine-rich polypeptides and specific anti-candida antibodies, interact with the oral mucosa and prevent overgrowth of candida. [14] Drugs such as inhaled steroids have been shown to increase the risk of oral candidiasis by possibly suppressing cellular immunity and phagocytosis. The local mucosal immunity reverts to normal on discontinuation of the inhaled steroids. Dentures predispose to infection with candida in as many as 65% of elderly people wearing full upper dentures. Wearing of dentures produces a microenvironment conducive to the growth of candida with low oxygen, low pH and an anaerobic environment. This may be due to enhanced adherence of Candida sp. to acrylic, reduced saliva flow under the surfaces of the denture fittings, improperly fitted dentures, or poor oral hygiene. [14] Other factors are oral cancer/leukoplakia and a high carbohydrate diet. Growth of candida in saliva is enhanced by the presence of glucose and its adherence to oral epithelial cells is enhanced by a high carbohydrate diet. [14]
Systemic factors
Extremes of life predispose to infection because of reduced immunity. Drugs such as broad spectrum antibiotics alter the local oral flora creating a suitable environment for candida to proliferate. Immunosuppressive drugs such as the antineoplastic agents have been shown in several studies to predispose to oral candidiasis by altering the oral flora, disrupting the mucosal surface and altering the character of the saliva. Other factors are smoking, diabetes, Cushing's syndrome, immunosuppressive conditions such as HIV infection, malignancies such as leukemia and nutritional deficiencies - vitamin B deficiencies have been particularly implicated. [14]
Laboratory diagnosis of oral candidiasis | |  |
Specimen collection [15]
The specimen should be collected from an active lesion; old 'burned out' lesions often do not contain viable organisms.
Collect the specimen under aseptic conditions.
Collect sufficient specimen.
Use sterile collection devices and containers
Label the specimen appropriately; all clinical specimens should be considered as potential biohazards and should be handled with care using universal precautions.
The specimen should be kept moist or in a transport medium and stored in a refrigerator at 4ºC. Due to variety of clinical forms of oral candidiasis, a number of different types of specimens may be submitted to the laboratory. [16]
Smear
Smears are taken from the infected oral mucosa, rhagades and the fitting side of the denture, preferably with wooden spatulas. Smears were fixed immediately in ether/alcohol 1:1 or with spray fix. Dry preparations may be examined by Gram stain method and periodic acid Schiff (PAS) method. [16]
Swabs
Swabs are seeded on Sabouraud's agar (25ºC or room temperature), on blood agar (35ºC), on Pagano-Levin medium (35ºC) or on Littmann's substrate (25ºC). Incubation at 25ºC is done to ensure recovery of species growing badly at 35ºC. Sabouraud's dextrose agar is frequently used as a primary culture medium. Since mixed yeast infections are seen in the oral cavity more frequently than previously thought, particularly in immunocompromised or debilitated patients, Pagano-Levin agar or Littmann's substrate, are useful supplements, because they enable distinction of yeasts on the basis of difference in colony color. [16]
Biopsy
Biopsy specimen should in addition be sent for histopathological examination when chronic hyperplastic candidosis is suspected. [16]
Imprint culture technique
Sterile, square (2.2 × 2.5 cm), plastic foam pads are dipped in peptone water and placed on the restricted area under study for 30-60 seconds. Thereafter the pad is placed directly on Pagano-Levin or Sabouraud's agar, left in situ for the first 8 hours of 48 hours incubation at 37ºC. Then, the candidal density at each site is determined by a Gallenkamp colony counter and expressed as colony forming units per mm 2 (CFU mm -2 ). [16],[17] Thus, it yields yeasts per unit mucosal surface. It is useful for quantitative assessment of yeast growth in different areas of the oral mucosa and is thus useful in localizing the site of infection and estimating the candidal load on a specific area (Budtz-Jorgensen, 1978, Olsen and Stenderup A, 1990). [16],[18]
Impression culture technique
Taking maxillary and mandibular alginate impressions, transporting them to the laboratory and casting in 6% fortified agar with incorporated Sabouraud's dextrose broth. The agar models are then incubated in a wide necked, sterile, screw-topped jar for 48-72 hours at 37ºC and the CFU of yeasts estimated. [19]
Saliva
This simple technique involves requesting the patient to expectorate 2 ml of mixed unstimulated saliva into a sterile, universal container, which is then vibrated for 30 seconds on a bench vibrator for optimal disaggregation. The number of Candida expressed as CFU/ml of saliva is estimated by counting the resultant growth on Sabouraud's agar using either the spiral plating or Miles and Misra surface viable counting technique. Patients who display clinical signs of oral candidiasis usually have more than 400 CFU/mL. [19]
Oral rinse technique
It was first described by Mckendrik, Wilson and Main (1967) and later modified by Samaranayake et al. (1968). [20]
Paper Points
An absorbable sterile point is inserted to the depth of the pocket and kept there for 10 sec and then the points are transferred to a 2 ml vial containing Moller's VMGA III transport medium, (which also facilitates survival of facultative and anaerobic bacteria). [16]
Commercial identification kits
The Microstix-candida (MC) system consists of a plastic strip to which is affixed a dry culture area (10 mm × 10 mm) of modified Nickerson medium (Nickerson, 1953) and a plastic pouch for incubation. The O Yeast-I dent system is based on the use of chromogenic substances to measure enzyme activities. Ricult-N dip slide technique is similar to, but of higher sensitivity than MC system. [21]
Histological identification
Demonstration of fungi in biopsy specimens may require several serial sections to be cut. [16] Fungi can be easily demonstrated and studied in tissue sections with special stains. The routinely used Hematoxylin and Eosin stain poorly stains Candida species. The specific fungal stains such as PAS stain, Grocott-Gomori's methenamine silver (GMS) and Gridley stains are widely used for demonstrating fungi in the tissues, which are colored intensely with these stains. [17]
Physiological tests
The main physiological tests used in definitive identification of Candida species involve determination of their ability to assimilate and ferment individual carbon and nitrogen sources. [17],[22]
The assimilation reactions and fermentation reactions of Candida species are tabulated in [Table 1] and [Table 2].
Phenotypic methods [22],[23]
Serotyping
Serotyping is limited to the two serotypes (A and B), a fact that makes it inadequate as an epidemiologic tool. It has recently been shown that there can be wide discrepancies in the results obtained with different methods of serotyping,
Resistogram typing
Resistograms do not correlate with pathogenic potential and even though improvements have been made in the method growth end-points often present problems because of inoculum size, interpretation and reproducibility.
Yeast 'Killer Toxin' typing
These authors initially used nine killer strains, developing a triplet code to distinguish between 100 strains of C. albicans and found 25 killer- sensitive types. This method was expanded by using 30 killer strains and three antifungal agents, which appeared to discriminate between sufficient numbers of strains of C. albicans.
Morphotyping
This method has been used in a study of the morphotypes of 446 strains of C. albicans isolated from various clinical specimens.
Biotyping
Williamson (1987) has proposed a simpler method. This system comprised three tests, the APIZYM system, the API 20C system and a plate test for resistance to boric acid. This system was found to distinguish a possible 234 biotypes, of which 33 were found among the 1430 isolates of C. albicans taken from oral, genital and skin sites.
Protein typing
Non-lethal mutations of proteins during the yeast cell cycle yield proteins of differing physical properties between strains, which may be distinguishable by one or two dimensional gel electrophoresis. These methods have been used to separate C. albicans at the subspecies level.
Genetic methods
The earliest molecular methods used for fingerprinting C. albicans strains were karyotyping, restriction endonuclease analysis (REA) and restriction fragment length polymorphism (RFLP). In arbitrarily primed polymerase chain reaction (AP-PCR) analysis (synonym: randomly amplified polymorphic DNA (RAPD) analysis), the genomic DNA is used as a template and amplified at a low annealing temperature with use of a single short primer (9 to 10 bases) of an arbitrary sequence. [22]
Serological tests [23]
Serological tests for invasive candidiasis
- Detection of antibodies
- Slide agglutination
- Immunodiffusion
- Phytohemagglutination
- Coelectosynersis
- Immunoprecipitation
- A and B immunofluorescence
- Nonspecific Candida Antigens
- Latex agglutination
- Immunobloting
- Cell Wall Components
- Cell Wall Mannoprotein (CWMP)
- b-(1,3)-D-glucan
- Candida Enolase Antigen testing.
Immunodiagnosis[17]
The use of specific antibodies labeled with fluorescent stain permits causative organisms to be diagnosed accurately within minutes. However, the preparation of specific antisera and purified polyclonal or monoclonal antibodies entails a much more extensive technical outlay, so the application of these reagents need only be considered when a very precise diagnosis is of therapeutic consequence (Olsen and Stenderup, 1990). The usefulness of antibody testing in the diagnosis of oral candidosis when other simpler, sensitive and reliable techniques are available is questionable (Silverman et al., 1990).
Management | |  | [4]
Assessment of predisposing factor plays a crucial role in the management of candidal infection. Mostly the infection is simply and effectively treated with topical application of antifungal ointments. However in chronic mucocutaneous candidiasis with immunosuppression, topical agents may not be effective. In such instances systemic administration of medications is required [Table 3] and [Table 4]. [4]  | Table 4: Systemic antifungal medications of oropharyngeal candidiasis[4]
Click here to view |
Conclusion | |  |
Yeast-free diets, or people, are both impossible to come by. They can only be totally avoided in the diet by eating solely fresh dairy, meat, fish and peeled fresh fruits and vegetables. From a practical standpoint, this is neither feasible nor necessary. Total elimination of yeast from the body is also neither feasible nor desirable, considering that yeasts are beneficial to the body when a proper balance exists. Treatment of candida overgrowth does not seek the eradication of candida from the diet or the person, but rather a restoration of the proper and balanced ecological relationship between man and yeast.
References | |  |
1. | Terezhalmy GT, Huber MA. Oropharyngeal candidiasis: Etiology, epidemiology, clinical manifestations, diagnosis, and treatment. Crest Oral-B at dentalcare.com Contin Educ Course 2011;1-16.  |
2. | Prasanna KR. Oral candidiasis - A review. Scholarly J Med 2012;2:6-30.  |
3. | Dangi YS, Soni MS, Namdeo KP. Oral candidiasis: A review. Int J Pharm Pharm Sci 2010;2:36-41.  |
4. | Parihar S. Oral candidiasis- A review. Webmedcentral Dent 2011;2:1-18.  |
5. | Mandell GL, Bennett JE, Dolin R. Anti-fungal agents. Principles and practice of infectious diseases. 4 th ed. New York: Churchill Livingstone; 1994. p. 401-10.  |
6. | Lehmann PF. Fungal structure and morphology. Med Mycol 1998;4:57-8.  |
7. | Brassart D, Woltz A, Golliard M, Neeser JR. In-vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fuca1 ® 2Galb-bearing complex carbohydrates. Infect Immun 1991;59:1605-13.  |
8. | Ghannoum MA, Burns GR, Elteen A, Radwan SS. Experimental evidence for the role of lipids in adherence of Candida spp to human buccal epithelial cells. Infect Immun 1986;54:189-93.  |
9. | Douglas LJ. Surface composition and adhesion of Candida albicans. Biochem Soc Trans 1985;13:982-4.  [PUBMED] |
10. | Sobel JD, Muller G, Buckley HR. Critical role of germ tube formation in the pathogenesis of candidal vaginitis. Infect Immun 1984;44:576-80.  [PUBMED] |
11. | Saltarelli CG, Gentile KA, Mancuso SC. Lethality of candidal strains as influenced by the host. Can J Microbiol 1975;21:648-54.  [PUBMED] |
12. | Smith CB. Candidiasis: Pathogenesis, host resistance, and predisposing factors. In: Bodey GP and Fainstein V, editors: Candidiasis. New York: Raven Press; 1985.P. 53-70.  |
13. | Slutsky B, Buffo J, Soll DR. High frequency switching of colony morphology in Candida albicans. Science 1985;230:666-9.  [PUBMED] |
14. | Akpan A, Morgan R. Oral candidiasis. Postgrad Med J 2002;78:455-9.  |
15. | Epstein JB, Pearsall NN, Truelove EL. Oral candidosis: Effects of antifungal therapy upon clinical signs and symptoms, salivary antibody, and mucosal adherence of Candida albicans. Oral Surg Oral Med Oral Pathol 1981;51:32-6.  [PUBMED] |
16. | Olsen I, Stenderup A. Clinical - mycologic diagnosis of oral yeast infections. Acta Odontol Scand 1990;48:11-8.  |
17. | Silverman Jr S. Laboratory diagnosis of oral candidosis. In: Samaranayake LP, MacFarlane TW, editors. Oral Candidosis. 1 st ed. Cambridge: Butterwort; 1990. p. 213-37.  |
18. | Budtz-Jorgensen E. Clinical aspects of Candida infection in denture wearers. J Am Dent Assoc 1978;96:474-9.  |
19. | Epstein JB, Pearsall NN, Truelove EL. Quantitative relationships between candida albicans in saliva and the clinical status of human subjects. J Clin Microbiol 1980;12:475-6.  [PUBMED] |
20. | Samaranayake LP. Nutritional factors and oral candidosis. J Oral Pathol 1986;15:61-5.  [PUBMED] |
21. | Cutler JE, Friedman L, Milner KC. Biological and chemical characteristics of toxic substances from Candida albicans. Infect Immun 1972;6:616-27.  [PUBMED] |
22. | Sandven P. Laboratory identification and sensitivity testing of yeast isolates. Acta Odontal Scand 1990;48:27-36.  |
23. | McCullough MJ, Ross BC, Reade PC. Candida albicans: A review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int J Oral Maxillofac Surg 1996;25:136-44.  |
[Table 1], [Table 2], [Table 3], [Table 4]
This article has been cited by | 1 |
Clinical applications of antimicrobial photodynamic therapy in dentistry |
|
| Leila Gholami, Shiva Shahabi, Marzieh Jazaeri, Mahdi Hadilou, Reza Fekrazad | | Frontiers in Microbiology. 2023; 13 | | [Pubmed] | [DOI] | | 2 |
Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases |
|
| Zijian Pan, Hao Dong, Ning Huang, Jie Fang | | Frontiers in Physiology. 2022; 13 | | [Pubmed] | [DOI] | | 3 |
Candida Carriers among Individuals with Tongue Piercing—A Real-Time PCR Study |
|
| Georgi Tomov, Nikola Stamenov, Deyan Neychev, Kiril Atliev | | Antibiotics. 2022; 11(6): 742 | | [Pubmed] | [DOI] | | 4 |
Synergic Effect of Phthalide Lactones and Fluconazole and Its New Analogues as a Factor Limiting the Use of Azole Drugs against Candidiasis |
|
| Piotr Krezel, Teresa Olejniczak, Aleksandra Toloczko, Joanna Gach, Marek Weselski, Robert Bronisz | | Antibiotics. 2022; 11(11): 1500 | | [Pubmed] | [DOI] | | 5 |
Prolonged mask wearing does not alter the oral microbiome, salivary flow rate or gingival health status – A pilot study |
|
| Sheralyn Au, Divyashri Baraniya, Jason Dao, Shehar Bano Awan, Jenelle Alvarez, Shari Sklar, Tsute Chen, Sumant Puri, Nezar N. Al-Hebshi | | Frontiers in Cellular and Infection Microbiology. 2022; 12 | | [Pubmed] | [DOI] | | 6 |
Applications of Plasma-Activated Water in Dentistry: A Review |
|
| Noala Vicensoto Moreira Milhan, William Chiappim, Aline da Graça Sampaio, Mariana Raquel da Cruz Vegian, Rodrigo Sávio Pessoa, Cristiane Yumi Koga-Ito | | International Journal of Molecular Sciences. 2022; 23(8): 4131 | | [Pubmed] | [DOI] | | 7 |
A Preliminary Pilot Study: Metabolomic Analysis of Saliva in Oral Candidiasis |
|
| Takuya Adachi, Norishige Kawanishi, Narumi Ichigaya, Masahiro Sugimoto, Noriyuki Hoshi, Katsuhiko Kimoto | | Metabolites. 2022; 12(12): 1294 | | [Pubmed] | [DOI] | | 8 |
Alternative Antibiotics in Dentistry: Antimicrobial Peptides |
|
| Alexandra Griffith, Akilah Mateen, Kenneth Markowitz, Steven R. Singer, Carla Cugini, Emi Shimizu, Gregory R. Wiedman, Vivek Kumar | | Pharmaceutics. 2022; 14(8): 1679 | | [Pubmed] | [DOI] | | 9 |
How Effective Are Antimicrobial Agents on Preventing the Adhesion of Candida albicans to Denture Base Acrylic Resin Materials? A Systematic Review |
|
| Salwa Omar Bajunaid | | Polymers. 2022; 14(5): 908 | | [Pubmed] | [DOI] | | 10 |
Saponin from Massularia acuminata Inhibits the Growths of Some Microbial and Human Cancerous Cells in vitro |
|
| Ayodeji O. Oriola, Adetunji J. Aladesanmi, Thomas O. Idowu, Ezekiel O. Akinkunmi, Adebola O. Oyedeji, Makanjuola O. Ogunsina, Gilbert Arthur, Frank Schweizer | | Chemistry Africa. 2022; | | [Pubmed] | [DOI] | | 11 |
Distribution and antifungal susceptibility profiles of Candida species isolated from people living with HIV/AIDS in a public hospital in Goiânia, GO, Brazil |
|
| Vivianny Aparecida Queiroz Freitas, Andressa Santana Santos, Ana Laura Sene Amâncio Zara, Carolina Rodrigues Costa, Cassia Silva de Miranda Godoy, Renata de Bastos Ascenço Soares, Fábio Silvestre Ataídes, Maria do Rosário Rodrigues Silva | | Brazilian Journal of Microbiology. 2022; | | [Pubmed] | [DOI] | | 12 |
Antibiotic Prophylaxis Prescribing Practice in Head and Neck Tumor Resection and Free Flap Reconstruction |
|
| John Frederick Daly, Peter Francis Gearing, Nicholas Shi Jie Tang, Anand Ramakrishnan, Kasha Priya Singh | | Open Forum Infectious Diseases. 2022; 9(1) | | [Pubmed] | [DOI] | | 13 |
Does
YouTube
™ provide reliable information on oral candidiasis?
|
|
| Seval Ceylan Sen, Tugçe Paksoy, Duygu Göller Bulut, Gülbahar Ustaoglu | | Oral Diseases. 2022; | | [Pubmed] | [DOI] | | 14 |
COVID-19-associated fungal spectrum (CAFS): The intraoral purview |
|
| Naila Perween, Anam Mushtaq, Sakshi Chawla | | Journal of Global Oral Health. 2022; 0: 1 | | [Pubmed] | [DOI] | | 15 |
TREAMENT APPROACH FOR ORAL CANDIDIASIS: TWO CASE REPORTS |
|
| Gaye KESER, Filiz NAMDAR PEKINER | | Clinical and Experimental Health Sciences. 2021; | | [Pubmed] | [DOI] | | 16 |
Effect of diglyceryl dicaprylate on Candida albicans growth and pathogenicity |
|
| Tomojiro Koide, Muneaki Tamura | | Bioscience, Biotechnology, and Biochemistry. 2021; 85(11): 2334 | | [Pubmed] | [DOI] | | 17 |
The combined application of the anti-RAS1 and anti-RIM101 2'-OMethylRNA oligomers enhances Candida albicans filamentation control |
|
| Ana Barbosa, Daniela Araújo, Mariana Henriques, Sónia Silva | | Medical Mycology. 2021; 59(10): 1024 | | [Pubmed] | [DOI] | | 18 |
Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans |
|
| Feng Yang, Vladimir Gritsenko, Yaniv Slor Futterman, Lu Gao, Cheng Zhen, Hui Lu, Yuan-ying Jiang, Judith Berman, James W. Kronstad | | mBio. 2021; 12(4) | | [Pubmed] | [DOI] | | 19 |
Engineering a Cysteine-Deficient Functional Candida albicans Cdr1 Molecule Reveals a Conserved Region at the Cytosolic Apex of ABCG Transporters Important for Correct Folding and Trafficking of Cdr1 |
|
| Golnoush Madani, Erwin Lamping, Richard D. Cannon, Aaron P. Mitchell | | mSphere. 2021; 6(1) | | [Pubmed] | [DOI] | | 20 |
Candida species in community-acquired pneumonia in patients with chronic aspiration |
|
| Benjamin J. Moss, Daniel M. Musher | | Pneumonia. 2021; 13(1) | | [Pubmed] | [DOI] | | 21 |
Ozone ultrafine bubble water inhibits the early formation of Candida albicans biofilms |
|
| Yuka Shichiri-Negoro, Chiaki Tsutsumi-Arai, Yuki Arai, Kazuhito Satomura, Shinichi Arakawa, Noriyuki Wakabayashi, Aijaz Ahmad | | PLOS ONE. 2021; 16(12): e0261180 | | [Pubmed] | [DOI] | | 22 |
Efficacy of essential oil of cinnamon for the treatment of oral candidiasis: A randomized trial |
|
| Maria Rejane Cruz Araújo, Panmella Pereira Maciel, Lúcio Roberto Cançado Castellano, Paulo Rogério Ferreti Bonan, Danielle da Nóbrega Alves, Ana Cláudia Dantas Medeiros, Ricardo Dias Castro | | Special Care in Dentistry. 2021; 41(3): 349 | | [Pubmed] | [DOI] | | 23 |
How Biophotonics Can Help Dentistry to Avoid or Minimize Cross Infection by SARS-CoV-2? |
|
| João Felipe Besegato, Priscila Borges Gobbo de Melo, Patrícia Eriko Tamae, Ana Paula Aparecida Raimundo Alves, Luis Felipe Rondón, Leon G. Leanse, Carolina dos Anjos, Heitor Hussni Casarin, Michelle Alexandra Chinelatti, Gisele Faria, Tianhong Dai, Vanderlei Salvador Bagnato, Alessandra Nara de Souza Rastelli | | Photodiagnosis and Photodynamic Therapy. 2021; : 102682 | | [Pubmed] | [DOI] | | 24 |
Discovery and Characterization of a Rapidly Fungicidal and Minimally Toxic Peptoid against Cryptococcus neoformans |
|
| R. Madison Green, Kevin L. Bicker | | ACS Medicinal Chemistry Letters. 2021; 12(9): 1470 | | [Pubmed] | [DOI] | | 25 |
From Simple Mouth Cavities to Complex Oral Mucosal Disorders—Curcuminoids as a Promising Therapeutic Approach |
|
| Sosmitha Girisa, Aviral Kumar, Varsha Rana, Dey Parama, Uzini Devi Daimary, Saman Warnakulasuriya, Alan Prem Kumar, Ajaikumar B. Kunnumakkara | | ACS Pharmacology & Translational Science. 2021; 4(2): 647 | | [Pubmed] | [DOI] | | 26 |
Fungicidal activity of grapefruit seed extract against the pathogenic Candida species causing oral candidiasis |
|
| Chiaki Tsutsumi-Arai, Chika Terada-Ito, Seiko Tatehara, Takahiro Imamura, Yusuke Takebe, Shinji Ide, Kazuhito Satomura | | Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 2021; 33(6): 626 | | [Pubmed] | [DOI] | | 27 |
Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis |
|
| Yujie Zhou, Lei Cheng, Binyou Liao, Yangyang Shi, Yulong Niu, Chengguang Zhu, Xingchen Ye, Xuedong Zhou, Biao Ren | | Applied Microbiology and Biotechnology. 2021; 105(6): 2485 | | [Pubmed] | [DOI] | | 28 |
Synthesis and evaluation of UV cross-linked Poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis |
|
| Jitendra B. Naik, Rahul L. Rajput, Jitendra S. Narkhede, Arun Mujumdar, Pritam B. Patil | | Journal of Polymer Research. 2021; 28(1) | | [Pubmed] | [DOI] | | 29 |
MUCORMYCOSIS: AN OVERVIEW FROM PROSTHODONTIC PERSPECTIVE |
|
| Chetna Sen, Pushkar Gupta, Sneha S Mantri | | GLOBAL JOURNAL FOR RESEARCH ANALYSIS. 2021; : 63 | | [Pubmed] | [DOI] | | 30 |
GC-MS Analysis and Antimicrobial Activity of an Iranian Traditional Medicinal Smoke (Anbarnasara) |
|
| Mahboobeh Akbarizare | | Journal of Medical Microbiology and Infectious Diseases. 2021; 9(3): 148 | | [Pubmed] | [DOI] | | 31 |
Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections |
|
| Adelina-Gabriela Niculescu, Alexandru Mihai Grumezescu | | Plants. 2021; 10(9): 1847 | | [Pubmed] | [DOI] | | 32 |
Clinical Characteristics and Relevance of Oral Candida Biofilm in Tongue Smears |
|
| Eunae Cho, YounJung Park, Ki-Yeol Kim, Dawool Han, Hyun Sil Kim, Jeong-Seung Kwon, Hyung-Joon Ahn | | Journal of Fungi. 2021; 7(2): 77 | | [Pubmed] | [DOI] | | 33 |
Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains |
|
| Matthew Gavino Donadu, Yeimmy Peralta-Ruiz, Donatella Usai, Francesca Maggio, Junior Bernando Molina-Hernandez, Davide Rizzo, Francesco Bussu, Salvatore Rubino, Stefania Zanetti, Antonello Paparella, Clemencia Chaves-Lopez | | Journal of Fungi. 2021; 7(5): 383 | | [Pubmed] | [DOI] | | 34 |
Oral Candidal Colonization in Patients with Different Prosthetic Appliances |
|
| Maja Kinkela Devcic, Suncana Simonic-Kocijan, Jelena Prpic, Igor Paskovic, Tomislav Cabov, Zoran Kovac, Irena Glazar | | Journal of Fungi. 2021; 7(8): 662 | | [Pubmed] | [DOI] | | 35 |
Biomaterials for the Prevention of Oral Candidiasis Development |
|
| Dan Cristian Gheorghe, Adelina-Gabriela Niculescu, Alexandra Catalina Bîrca, Alexandru Mihai Grumezescu | | Pharmaceutics. 2021; 13(6): 803 | | [Pubmed] | [DOI] | | 36 |
Solid and Semisolid Innovative Formulations Containing Miconazole-Loaded Solid Lipid Microparticles to Promote Drug Entrapment into the Buccal Mucosa |
|
| Viviana De Caro, Libero Italo Giannola, Giulia Di Prima | | Pharmaceutics. 2021; 13(9): 1361 | | [Pubmed] | [DOI] | | 37 |
Positive Effects of Saliva on Oral Candidiasis: Basic Research on the Analysis of Salivary Properties |
|
| Norishige Kawanishi, Noriyuki Hoshi, Takuya Adachi, Narumi Ichigaya, Katsuhiko Kimoto | | Journal of Clinical Medicine. 2021; 10(4): 812 | | [Pubmed] | [DOI] | | 38 |
Microbial Synthesis and Evaluation of Fungistatic Activity of 3-Butyl-3-hydroxyphthalide, the Mammalian Metabolite of 3-n-Butylidenephthalide |
|
| Joanna Gach, Teresa Olejniczak, Piotr Krezel, Filip Boratynski | | International Journal of Molecular Sciences. 2021; 22(14): 7600 | | [Pubmed] | [DOI] | | 39 |
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms |
|
| Catarina Milho, Jani Silva, Rafaela Guimarães, Isabel C. F. R. Ferreira, Lillian Barros, Maria José Alves | | Applied Sciences. 2021; 11(9): 4020 | | [Pubmed] | [DOI] | | 40 |
Utility of Photodynamic Therapy in Dentistry: Current Concepts |
|
| Anette Stájer, Szilvia Kajári, Márió Gajdács, Aima Musah-Eroje, Zoltán Baráth | | Dentistry Journal. 2020; 8(2): 43 | | [Pubmed] | [DOI] | | 41 |
Oral Candidiasis: A Disease of Opportunity |
|
| Taissa Vila, Ahmed S. Sultan, Daniel Montelongo-Jauregui, Mary Ann Jabra-Rizk | | Journal of Fungi. 2020; 6(1): 15 | | [Pubmed] | [DOI] | | 42 |
Candida albicans Adaptation on Simulated Human Body Fluids under Different pH |
|
| Ana Barbosa, Daniela Araújo, Eduarda Ribeiro, Mariana Henriques, Sónia Silva | | Microorganisms. 2020; 8(4): 511 | | [Pubmed] | [DOI] | | 43 |
Candida albicans as an Essential “Keystone” Component within Polymicrobial Oral Biofilm Models? |
|
| Tracy Young, Om-Alkhir Alshanta, Ryan Kean, David Bradshaw, Jonathan Pratten, Craig Williams, Chris Woodall, Gordon Ramage, Jason L. Brown | | Microorganisms. 2020; 9(1): 59 | | [Pubmed] | [DOI] | | 44 |
Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde |
|
| Danielle da Nóbrega Alves, Alex France Messias Monteiro, Patrícia Néris Andrade, Josy Goldoni Lazarini, Gisely Maria Freire Abílio, Felipe Queiroga Sarmento Guerra, Marcus Tullius Scotti, Luciana Scotti, Pedro Luiz Rosalen, Ricardo Dias de Castro | | Molecules. 2020; 25(24): 5969 | | [Pubmed] | [DOI] | | 45 |
Aster yomena has anti-arthritic activity against septic arthritis induced by Candida albicans: its terpenoid constituent is the most effective and has synergy with indomethacin |
|
| Zheong-Imm Rhew, Jong Hyun Lee, Yongmoon Han | | Advances in Traditional Medicine. 2020; 20(2): 213 | | [Pubmed] | [DOI] | | 46 |
The effectiveness of microwave disinfection in treating Candida-associated denture stomatitis: a systematic review and metaanalysis |
|
| Rodrigo Moreira Bringel da Costa, Rodrigo Lorenzi Poluha, Giancarlo De la Torre Canales, Joel Ferreira Santiago Junior, Paulo Cesar Rodrigues Conti, Karin Hermana Neppelenbroek, Vinicius Carvalho Porto | | Clinical Oral Investigations. 2020; 24(11): 3821 | | [Pubmed] | [DOI] | | 47 |
The preparation, characterization, and stability evaluation of a microemulsion-based oral spray containing clove oil for the treatment of oral candidiasis |
|
| Chaowalit Monton, Sukanya Settharaksa, Jirapornchai Suksaeree, Tun Chusut | | Journal of Drug Delivery Science and Technology. 2020; 57: 101735 | | [Pubmed] | [DOI] | | 48 |
Clotrimazole nanosuspensions-loaded hyaluronic acid-catechol/polyvinyl alcohol mucoadhesive films for oral candidiasis treatment |
|
| Chaiyakarn Pornpitchanarong, Theerasak Rojanarata, Praneet Opanasopit, Tanasait Ngawhirunpat, Prasopchai Patrojanasophon | | Journal of Drug Delivery Science and Technology. 2020; 60: 101927 | | [Pubmed] | [DOI] | | 49 |
Evaluation of a rapid immunochromatographic test for the detection of Candida species from oropharyngeal samples |
|
| Hidehito Matsui, Masato Higashide, Hideaki Hanaki | | Journal of Microbiological Methods. 2020; 179: 106090 | | [Pubmed] | [DOI] | | 50 |
Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis |
|
| H. Jafri, I. Ahmad | | Journal de Mycologie Médicale. 2020; 30(1): 100911 | | [Pubmed] | [DOI] | | 51 |
Antifungal and anti-biofilm effect of the calcium channel blocker verapamil on non-albicans Candida species |
|
| LILIANA SCORZONI, RAQUEL T. DE MENEZES, THAIS C. PEREIRA, PRISCILA S. OLIVEIRA, FELIPE DE CAMARGO RIBEIRO, EVELYN LUZIA DE SOUZA SANTOS, LUCIANA R.O. FUGISAKI, LUCIANE D. DE OLIVEIRA, JOSÉ BENEDITO O. AMORIM | | Anais da Academia Brasileira de Ciências. 2020; 92(4) | | [Pubmed] | [DOI] | | 52 |
Improving oral care for hospitalised patients: choosing appropriate products |
|
| Caroline Woon | | British Journal of Nursing. 2020; 29(9): 520 | | [Pubmed] | [DOI] | | 53 |
Cinnamaldehyde is a biologically active compound for the disinfection of removable denture: blinded randomized crossover clinical study |
|
| Marco Antônio Lavorato de Almeida, André Ulisses Dantas Batista, Maria Rejane Cruz de Araújo, Vanessa Fabiana Dei Santi de Almeida, Paulo Rogério Ferreti Bonan, Danielle Nóbrega Alves, Tereza Karla Vieira Lopes da Costa, Diego Figueiredo Nóbrega, Ricardo Dias de Castro | | BMC Oral Health. 2020; 20(1) | | [Pubmed] | [DOI] | | 54 |
Biofilm-Producing Candida Species Causing Oropharyngeal Candidiasis in HIV Patients Attending Sukraraj Tropical and Infectious Diseases Hospital in Kathmandu, Nepal |
|
| Keshav Lamichhane, Nabaraj Adhikari, Anup Bastola, Lina Devkota, Parmananda Bhandari, Binod Dhungel, Upendra Thapa Shrestha, Bipin Adhikari, Megha Raj Banjara, Komal Raj Rijal, Prakash Ghimire | | HIV/AIDS - Research and Palliative Care. 2020; Volume 12: 211 | | [Pubmed] | [DOI] | | 55 |
Oral Prevalence of Candida Species in Patients Undergoing Systemic Glucocorticoid Therapy and the Antifungal Sensitivity of the Isolates |
|
| Jia-ling Xiao, Guo-chao Xu, Sybren de Hoog, Jian-jun Qiao, Hong Fang, Ya-li Li | | Infection and Drug Resistance. 2020; Volume 13: 2601 | | [Pubmed] | [DOI] | | 56 |
Fluconazole Resistant Oral Candidiasis on HIV Patient - What Other Drug can We Choose? A Case Report |
|
| Dwi Murtiastutik, Cita Rosita Sigit Prakoeswa, Indah Setiawati Tantular | | Journal of Pure and Applied Microbiology. 2020; 14(1): 31 | | [Pubmed] | [DOI] | | 57 |
Colonization of Candida After the Placement of a Tongue Piercing, a Case Report |
|
| Szende Ledan-Muntean, Bianca Tudor | | Acta Medica Transilvanica. 2020; 25(4): 63 | | [Pubmed] | [DOI] | | 58 |
Adhesive protein-mediated cross-talk between Candida albicans and Porphyromonas gingivalis in dual species biofilm protects the anaerobic bacterium in unfavorable oxic environment |
|
| Dominika Bartnicka, Justyna Karkowska-Kuleta, Marcin Zawrotniak, Dorota Satala, Kinga Michalik, Gabriela Zielinska, Oliwia Bochenska, Andrzej Kozik, Izabela Ciaston, Joanna Koziel, Lindsay C. Dutton, Angela H. Nobbs, Barbara Potempa, Zbigniew Baster, Zenon Rajfur, Jan Potempa, Maria Rapala-Kozik | | Scientific Reports. 2019; 9(1) | | [Pubmed] | [DOI] | | 59 |
A comparison of the severity of oral candidiasis between gestational and type 1 diabetes mellitus |
|
| Ayu Ragil Destrian Pangestu, Siti Nosya Rachmawati, Leni Rokhma Dewi, Mei Syafriadi | | Dental Journal (Majalah Kedokteran Gigi). 2019; 52(3): 110 | | [Pubmed] | [DOI] | | 60 |
Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii |
|
| Daniel Montelongo-Jauregui, Stephen P. Saville, Jose L. Lopez-Ribot, Michael Lorenz, Mary Ann Jabra-Rizk, Anna Dongari-Bagtzoglou | | mBio. 2019; 10(3) | | [Pubmed] | [DOI] | | 61 |
Fighting biofilms with lantibiotics and other groups of bacteriocins |
|
| Harsh Mathur, Des Field, Mary C. Rea, Paul D. Cotter, Colin Hill, R. Paul Ross | | npj Biofilms and Microbiomes. 2018; 4(1) | | [Pubmed] | [DOI] | | 62 |
DRUG ENHANCEMENT, SYNERGISM AND ANTIFUNGAL ACTIVITY OF MICONAZOLE ASSOCIATED POLYGODIAL AGAINST CANDIDA ALBICANS |
|
| Vagner Rodrigues Santos, Livia SâmaraFranciele De Souza Pinto, Bruno César De Borges, Isao Kubo | | International Journal of Research -GRANTHAALAYAH. 2017; 5(11): 95 | | [Pubmed] | [DOI] | |
|
 |
|
|
|
|